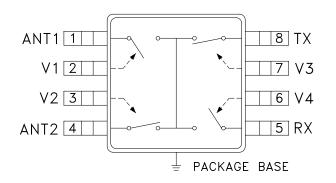


HMC436MS8G


GaAs MMIC DPDT DIVERSITY SWITCH, 4.9 - 5.9 GHz

Typical Applications

This switch is ideal for use as a DPDT Diversity Switch for 4.9 - 5.9 GHz applications:

- HiperLAN & 802.11a WLAN
- UNII Radios

Functional Diagram

Features

Low Insertion Loss: 1.0 dB

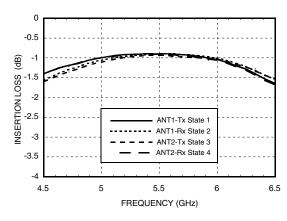
High IP3: +50 dBm

P1dB Compression: 1 Watt Positive Control: 0/+3V

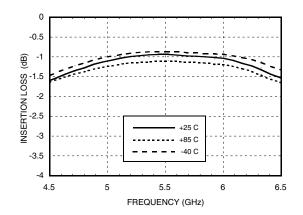
Ultra Small MSOP8G Package: 14.8 mm²

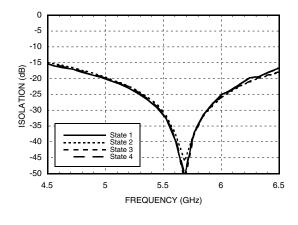
General Description

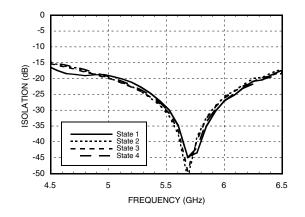
The HMC436MS8G is a low cost C-band DPDT switch that operates between 4.9 and 5.9 GHz. This switch can operate as an integrated antenna diversity and transmit/receive switch for the 802.11a/HiperLAN and UNII radio platforms. The design provides 20 dB of isolation between antennas and between Tx and Rx ports. The switch features 1 dB insertion loss and high power handling capability. Switch state is controlled using four control voltage lines toggled between 0 and +3 to +5V.

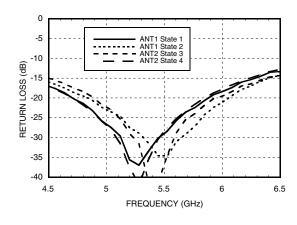

Electrical Specifications,

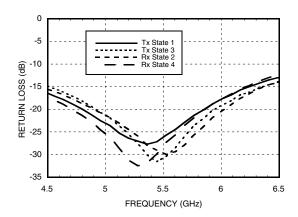
 $T_A = +25^{\circ}$ C, Vctl = 0/+3 Vdc (Unless Otherwise Stated), 50 Ohm System


Parameter		Frequency	Min.	Тур.	Max.	Units
Insertion Loss		4.9 - 5.1 GHz 5.1 - 5.9 GHz		1.2 1.0	1.5 1.3	dB
Isolation		4.9 - 5.1 GHz 5.1 - 5.4 GHz 5.4 - 5.9 GHz	14 16 20	18 20 25		dB dB
Return Loss (On State, Any Port)		4.9 - 5.1 GHz 5.1 - 5.4 GHz 5.4 - 5.9 GHz	17 16 13	20 20 17		dB dB
Input Power for 1 dB Compression	Vctl= 0/+3V Vctl= 0/+5V	4.9 - 5.9 GHz	27 30	30 33		dBm dBm
Input Power for 0.1 dB Compression	Vctl= 0/+3V Vctl= 0/+5V	4.9 - 5.9 GHz	23 29	26 32		dBm dBm
Input Third Order Intercept (Two-Tone Input Power= +17 dBm Each Tone)	Vctl= 0/+3V Vctl= 0/+5V	4.9 - 5.9 GHz	47 49	50 52		dBm dBm
Switching Characteristics	tRISE / tFALL (10/90% RF) tON / tOFF (50% CTL to 10/90% RF)	4.9 - 5.9 GHz		10 25		ns ns

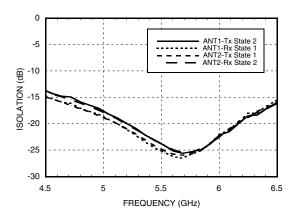

Insertion Loss


Insertion Loss vs. Temperature

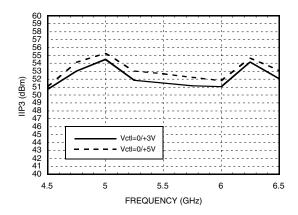

Isolation, Tx & Rx

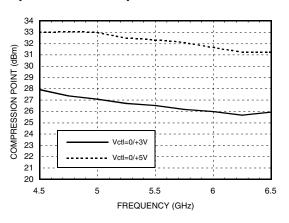

Isolation, ANT1 & ANT2

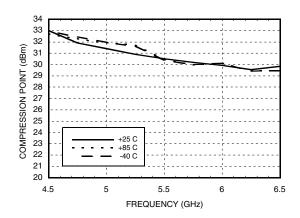
Return Loss, ANT1 & ANT2



Return Loss, Tx & Rx




Isolation, ANT1 / ANT2 - Tx / Rx


Input IP3 *

Input 0.1 dB Compression Point

Input 1 dB Compression Point, Vctl= 0/+3V

Control Voltages

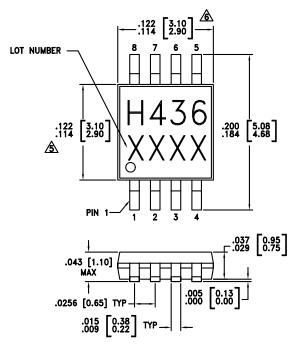
State	Bias Condition
Low	0 to +0.5 Vdc @ 20 μA
High	+3.0 to +5.5 Vdc @ 20 μA Typ.

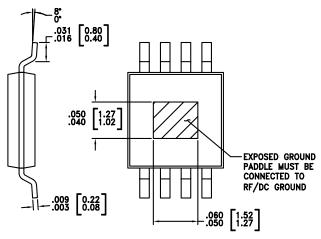
Truth Table

Path	V1	V2	V3	V4	State
ANT1 - Tx	High	Low	High	Low	1
ANT1 - Rx	High	Low	Low	High	2
ANT2 - Tx	Low	High	High	Low	3
ANT2 - Rx	Low	High	Low	High	4
All Off*	Low	Low	Low	Low	5

^{*} External components are necessary if "all off" isolation state is desired. See HMC436MS8G product note.

^{*} Two-tone input power = +17 dBm each tone, 1 MHz spacing.


Absolute Maximum Ratings


RF Input Power Vctl= 0/+3V	+30 dBm	
Control Voltage Range (V1, V2, V3, V4)	-0.5 to +7.5 Vdc	
Storage Temperature	-65 to +150 °C	
Operating Temperature	-40 to +85 °C	

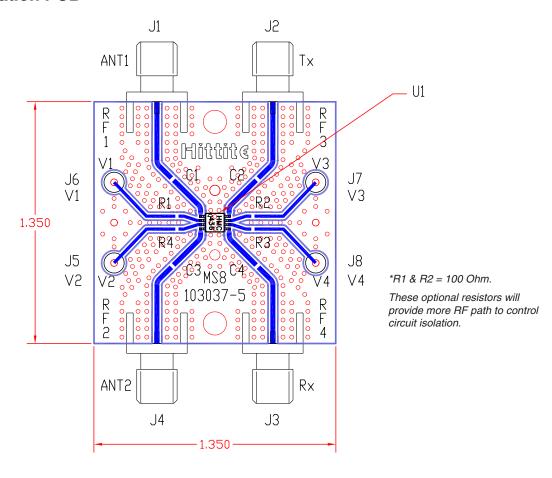
Caution: Do not "Hot Switch" power levels greater than +23 dBm (Vctl = 0/+3 Vdc).

DC blocking capacitors are required at ports ANT1, ANT2, Tx, Rx.

Outline Drawing

NOTES:

- PACKAGE BODY MATERIAL: LOW STRESS INJECTION MOLDED PLASTIC SILICA AND SILICON IMPREGNATED.
- 2. LEADFRAME MATERIAL: COPPER ALLOY
- 3. LEADFRAME PLATING: Sn/Pb SOLDER
- 4. DIMENSIONS ARE IN INCHES [MILLIMETERS].
- /5\ DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.15mm PER SIDE.
- 6 DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.25mm PER SIDE.
- 7. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.



Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1, 4	ANT1, ANT2	These pins are DC coupled and matched to 50 Ohms. Blocking capacitors are required.	
2, 3, 6, 7	V1, V2, V4, V3	See truth and control voltage tables.	R c
5, 8	Rx, Tx	These pins are DC coupled and matched to 50 Ohms. Blocking capacitors are required.	
	GND	Package bottom has exposed metal paddle that must be connected to PCB RF ground.	<u> </u>

Evaluation PCB

List of Material

Item	Description
J1 - J4	PC Mount SMA Connector
J5 - J8	DC Pin
C1 - C4	100 pF Capacitor, 0402 Pkg.
R1 - R2	100 Ohm Resistor, 0402 Pkg.
U1	HMC436MS8G DPDT Diversity Switch
PCB*	103037 Evaluation PCB 1.5" x 1.5"
* Circuit Board Material: Rogers 4350	

The circuit board used in the final application should use RF circuit design techniques. Signal lines should have 50 ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown above. A sufficient number of VIA holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown above is available from Hittite upon request.